Harmonic analysis on the quotient spaces of Heisenberg groups
نویسندگان
چکیده
منابع مشابه
Harmonic analysis on finite Heisenberg groups
This paper contains some new results on harmonic analysis on finite Heisenberg groups. We compute the dual and obtain further consequences, not restricting ourselves to finite fields or to finite local rings. We give an outlook on harmonic analysis on special finite nilpotent groups of class 3. We also recall the use of nilpotent groups in various areas of mathematics and mathematical physics.
متن کاملHarmonic Analysis on Heisenberg Nilmanifolds
In these lectures we plan to present a survey of certain aspects of harmonic analysis on a Heisenberg nilmanifold Γ\Hn. Using Weil-Brezin-Zak transform we obtain an explicit decomposition of L(Γ\H) into irreducible subspaces invariant under the right regular representation of the Heisenberg group. We then study the Segal-Bargmann transform associated to the Laplacian on a nilmanifold and charac...
متن کاملQuotient Spaces modulo Algebraic Groups
In algebraic geometry one often encounters the problem of taking the quotient of a scheme by a group. Despite the frequent occurrence of such problems, there are few general results about the existence of such quotients. These questions come up again and again in the theory of moduli spaces. When we want to classify some type of algebraic objects, say varieties or vector bundles, the classifica...
متن کاملHarmonic analysis on Heisenberg-Clifford Lie supergroups
We define a Fourier transform and a convolution product for functions and distributions on Heisenberg–Clifford Lie supergroups. The Fourier transform exchanges the convolution and a pointwise product, and is an intertwining operator for the left regular representation. We generalize various classical theorems, including the Paley–Wiener–Schwartz theorem, and define a convolution Banach algebra.
متن کاملSpaces of Bounded Spherical Functions on Heisenberg Groups: Part I
Consider a linear multiplicity free action by a compact Lie group K on a finite dimensional hermitian vector space V . Letting K act on the associated Heisenberg group HV = V × R yields a Gelfand pair. In previous work we have applied the Orbit Method to produce an injective mapping Ψ from the space ∆(K,HV ) of bounded K-spherical functions on HV to the space h ∗ V /K of K-orbits in the dual of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nagoya Mathematical Journal
سال: 1991
ISSN: 0027-7630,2152-6842
DOI: 10.1017/s0027763000003676